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The effect of inertia on the dynamics of a solid particle (a circular cylinder, an elliptical
cylinder, and an ellipsoid) suspended in shear flow is studied by solving the discrete
Boltzmann equation. At small Reynolds number, when inertia is negligible, the be-
haviour of the particle is in good agreement with the creeping flow solution showing
periodic orbits. For an elliptical cylinder or an ellipsoid, the results show that by
increasing the Reynolds number, the period of rotation increases, and eventually be-
comes infinitely large at a critical Reynolds number, Rec. At Reynolds numbers above
Rec, the particle becomes stationary in a steady-state flow. It is found that the transi-
tion from a time-periodic to a steady state is through a saddle-node bifurcation, and,
consequently, the period of oscillation near this transition is proportional to |p−pc|−1/2,
where p is any parameter in the flow, such as the Reynolds number or the density ratio,
which leads to this transition at p = pc. This universal scaling law is presented along
with the physics of the transition and the effect of the inertia and the solid-to-fluid den-
sity ratio on the dynamics. It is conjectured that this transition and the scaling law are
independent of the particle shape (excluding body of revolution) or the shear profile.

1. Introduction
The motion and dynamics of a single particle suspended in simple shear flow

is fundamental to understanding suspension hydrodynamics. The physics of such a
system at negligible particle Reynolds number, when inertia can be totally neglected,
has been studied extensively (Jeffery 1922; Bretherton 1961; Goldsmith & Mason
1961). Comprehensive review articles document significant progress in this area (Leal
1980; Bossis & Brady 1984; Brady & Bossis 1988). However, for finite particle
Reynolds number, when inertia cannot be neglected, the dynamics of even the
simplest case – a single particle suspended in Couette flow – is not known. In this
study, the dynamics of a circular cylinder, an elliptical cylinder, and an ellipsoid
suspended between two parallel plates in simple shear is investigated.

The motion of a circular cylinder freely suspended and placed symmetrically in a
steady simple shear at small Reynolds number has been investigated by Robertson &
Acrivos (1970). They have obtained the first-order correction term to the creeping-flow
solution using the inner and outer asymptotic expansion. Kossack & Acrivos (1974)
presented numerical solutions to the full two-dimensional Navier–Stokes equations
for values of Re up to 280. They found that the dimensionless rotational speed of the
freely suspended cylinder decreases as Re−1/2 for high Reynolds number.

† Author to whom correspondence should be addressed.
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Poe & Acrivos (1975) present experimental data for a rotating cylinder in a
simple shear flow where three different confinement ratios of the channel width,
H , to the radius, r, of the cylinder have been used. However, the influence of the
confinement ratio on the values of the dimensionless rotation rate is not discussed.
For low Reynolds number, their experimental results are in agreement with the
results obtained numerically by Kossack & Acrivos (1974). Owing to the appearance
of flow instabilities, steady flow experiments could not be performed for Re higher
than 23.

Recently an experimental investigation was carried out in the range 39 6 Re 6 108
by Zettner & Yoda (2000). In contrast to a stationary cylinder, in this case there is
a layer of fluid moving with a freely rotating cylinder, and therefore the stagnation
points are not on the surface of the cylinder. The locations of the stagnation point and
the velocity field around the stationary as well as the rotating cylinder are measured
using particle image velocimetry (PIV). In this range of Reynolds number, the
Re−1/2 relation concerning the dimensionless rotational speed of the freely suspended
cylinder, predicted by numerical calculation (Kossack & Acrivos 1974), is not observed
in the experiments. Besides, the rotation rate of the cylinder in steady state at Re ≈ 20
obtained by Poe & Acrivos (1975) is considerably lower than the rate of rotation
obtained by Zettner & Yoda (2000) at Re ≈ 39. The reason for the discrepancy
between the previous studies for a circular cylinder is explored and clarified in this
paper as background information for the new results on the dynamics of elliptical
cylinders and ellipsoids at high Re.

A thorough understanding of the behaviour of elliptical cylinders and ellipsoids
freely suspended in a shear flow is fundamentally important for understanding and
predicting flow behaviour in suspension rheology. In many flow problems, such as
suspension flow in blade coating, the particle Reynolds number could be much larger
than one. However, most of the effort in the past has been devoted to flows with neg-
ligible particle Reynolds number. The work described here presents a computational
investigation of an elliptical cylinder and an ellipsoid freely suspended in a shear flow
for values of particle Reynolds number from 0.08 up to 100. With small Reynolds
number (Re = 0.08), results from computations for an elliptical cylinder in a shear
flow show good agreement with the analytical solutions obtained by Jeffery (1922).
When the Reynolds number is increased, it is found that inertia has a significant
impact on the particle motion.

The motion of an elliptical cylinder and an ellipsoid suspended in a simple shear
flow at zero Reynolds number is well understood. Analytical solutions for two special
cases were discussed by Jeffery (1922). Assume that (x′, y′, z′) are coordinates fixed in
space, and that the shear flow is (u, v, w) = (0, 0,−Gy′), where G is the shear rate and
the vorticity vector is parallel to the x′-axis. Jeffery (1922) studied the motion of a
solid ellipsoid, given by

x2

a2
+
y2

b2
+
z2

c2
= 1 (1)

in a simple shear flow at vanishing Reynolds number. He assumed the force and
torque on the particle to be zero. One of the special cases is when one of the principal
axes, say x, of the ellipsoid is kept parallel to the vorticity vector in the shear flow
with the ellipsoid rotating around this axis. The angle and the angular rate are given
by

χ = tan−1

(
b

c
tan

bcGt

b2 + c2

)
, (2)
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Figure 1. Computational domain for the rotation of an elliptical cylinder in a simple shear flow.
This elliptical cylinder is a limiting case of the ellipsoid x2/a2 + y2/b2 + z2/c2 = 1 with 1/a → 0.
(x′, y′, z′) are coordinates fixed in space, where the x′-axis is parallel to the vorticity vector. The
shear flow is (u, v, w) = (0, 0,−Gy′). (x, y, z) are coordinates fixed on the elliptical cylinder, where
the x-axis is parallel to x′. χ is the angle from the y′-axis to the y-axis, i.e. the orientation of the
elliptical cylinder.

χ̇ =
G

b2 + c2
(b2 cos2 χ+ c2 sin2 χ), (3)

where t represents time; χ and χ̇ are the angle and the angular rate of the rotation,
respectively. In this problem, one of the ellipsoid’s principal axes, x, is always parallel
to x′. This solution also applies to a two-dimensional ellipse, or an elliptical cylinder
(as shown in figure 1), an ellipsoid with one principal axis, a, extended to infinity.
From the above analytical solution, it is clear that the motion of the ellipsoid or
ellipse is periodic with the period

T =
2π(b2 + c2)

bcG
. (4)

In every time interval, T , the particle completes a full rotation. For a circular cylinder,
b = c = r, the angular rate of rotation is steady in time, and the period is T = 4π/G.

From Jeffery’s solution, (2) and (3), the question one may ask is how the motion of
the ellipse or the ellipsoid will be influenced by the presence of inertia, that is when
the particle Reynolds number is not zero. Feng & Joseph (1995) calculated this special
two-dimensional case with finite Reynolds number (Re = 1.0 in their calculation) by
a quasi-steady approximation and confirmed that with small Reynolds number the
motion of the particle is only slightly influenced. They concluded that the moment
of inertia of the ellipse has a weak effect on its rotation at small Reynolds number.
However, it has been found that as the Reynolds number is increased, the motion
of the particle will be dominated by inertia, and a new state will appear at a critical
Reynolds number (Aidun & Ding 1997; Aidun, Lu & Ding 1998). In the present paper,
this transition has been analysed and generalized through a universal scaling law.

The computational method used in the present work is based on the solution of the
discrete Boltzmann equation to determine the motion of particles suspended in fluid
(McNamara & Zanetti 1988; Ladd 1994a, b, 1996, 1997; Aidun & Lu 1995; Aidun,
Lu & Ding 1997, 1998). In this method, the fluid is described by the discrete version
of Boltzmann equation while the motion of the solid particle is determined by the
Newtonian dynamics equation. The application of the lattice-Boltzmann method to
the motion of solid particles suspended in fluid was first suggested by Ladd (1994a, b).
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Ladd’s method, requiring the fluid to occupy the entire computational domain, can
only be used to simulate solid particles with density larger than that of fluid. A
method without this limitation is presented by Aidun et al. (1998) along with several
examples demonstrating its accuracy and robustness.

The purpose of the present work is to provide a better understanding of the effect
of inertia on particle dynamics in shear flow. Section 2 presents the basic equations for
the motion of the solid particle suspended in fluid, along with dimensional analysis.
Section 3 outlines the results from simulation of a circular cylinder in a simple
shear flow with small and moderate values of Reynolds number. At small Reynolds
numbers the results presented in this paper are in agreement with the experiments
by Poe & Acrivos (1975), while at moderate Reynolds numbers they are in good
agreement with experiments by Zettner & Yoda (2000). The confinement ratio H/r
has been proven to play an important role in determining the rotating rate of the
cylinder at steady state. In § 4, the motion of an elliptical cylinder in a simple shear
flow is discussed. In this study, the problem is examined with Reynolds number
increasing from 0 to 50. The results show that as the Reynolds number increases, the
period of rotation, T , increases to infinity at a critical point, where Re = Rec, beyond
which (Re > Rec) the particle becomes stationary in a steady-state shear flow. In § 5,
it is shown that the critical value Rec depends on another important dimensionless
parameter, the solid-to-fluid density ratio, α = ρs/ρf . The motion of an ellipsoid in
shear flow is discussed in § 6. Results in this paper are summarized in § 7. Some
conclusions and hypotheses are presented in § 8.

2. Dimensional analysis
The equations for particle motion in a Newtonian fluid, that is, the usual Navier–

Stokes and continuity equations complemented by the Newtonian Dynamics equation
govern the motion of the solid particle. In non-dimensional form, these equations are
given by

Re

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ∇2u, (5)

∇ · u = 0, (6)

αqRe
d2χ

dt2
= N, (7)

where N is the sum of torques on the particle about the x-axis. In these equations,
length, velocity, time, and torque are scaled by d, Gd, 1/G, and µGdn, respectively,
where d is an appropriate particle length scale, such as 2b for an ellipse. For two-
dimensional cases, inertia and torque are per unit length, and therefore, n = 2; for
three-dimensional cases, n = 3. There are three parameters in this equation that
influence the flow. These are the Reynolds number, Re = ρfGd

2/µ, the solid-to-fluid
density ratio, α = ρs/ρf , and the shape parameter, q = I/ρsd

n+2, where I is the
moment of inertia of the solid particle about the x-axis. In this paper we only discuss
the effect of the first two parameters, Re and α, on the motion of the particle.

The quasi-steady approximation for particle motion used in Stokes flow approxi-
mations (Feng & Joseph 1995) given by

∇p = ∇2u, ∇ · u = 0, N = 0,

neglects the fluid as well as the solid inertia. The computational results presented
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below are obtained by including all of the inertia and viscous terms regardless of the
value of Re.

In this study, the recently developed lattice-Boltzmann method (Aidun et al. 1998)
is used for dynamical analysis of particles suspended in fluid. The fluid is modelled by
a group of fluid particles moving in a cubic lattice with discrete velocities. These fluid
particles are either at rest, or moving along the lattice links. The lattice-Boltzmann
equation describing the motion of the fluid particles is written as

fσi(x+ eσi, t+ 1)− fσi(x, t) = −1

τ
[fσi(x, t)− f(0)

σi (x, t)], (8)

where fσi(x, t) is the single-particle distribution function, f(0)
σi (x, t) is the equilibrium

distribution at (x, t), and τ is the single relaxation time. For the present model, the
speed of sound is cs =

√
1/3, and the kinematic viscosity is ν = (2τ− 1)/6. The solid

particle, however, moves in a continuous way, based on the Newtonian dynamics. The
position of the solid particle is updated by a fourth-order Runge–Kutta solution of
the Newtonian dynamical equation. The interaction between fluid and solid particle is
calculated by the ‘no-slip’ rule. Detailed discussion of the interaction and the motion
of solid particles can be found in an earlier publication (Aidun et al. 1998).

Since the surface of the particle is projected on a discrete computation lattice,
the particle boundary is defined by connected straight lines. As discussed previously
(Aidun et al. 1998), the boundary is always assumed to be at the midpoint of the
boundary nodes when the interaction between solid particle and fluid is considered.
When the method is used to simulate a system with high solid particle concentration,
relatively few computational lattices are used to outline the particle. In that case,
an effective hydrodynamic radius, ra, for sphere is defined by calculating the drag
coefficient of a sphere (Ladd 1994b), where ra depends on the kinematic viscosity, ν. In
the present study, however, there is only a single solid particle in a simple shear flow,
and the radius of the solid particle varies from 8 to 64 in different cases; therefore,
the influence of viscosity on the ‘effective hydrodynamic dimension’ is negligible.
Moreover, the ‘effective hydrodynamic dimension’ of an ellipse or ellipsoid so defined
has not been studied yet. Hence, the effective hydrodynamic radius is simply replaced
by the real radius, r. To test the validity of this approach, a circular cylinder rotating
in a simple shear flow is analysed for a wide range of kinematic viscosities. The
computational domain is 278 × 32 lattice units, and the radius, r, of the cylinder is
7.99 lattice units. At Reynolds number, Re = 3.192, the value of ν varies from 1/4
to 1/64. It is found that for particles of such large size, the value of the kinematic
viscosity, when less than 1/4, has an insignificant influence on the results. In fact, the
dimensionless rotation rate, χ̇/G, remains constant for all values of ν for steady and
transient states. Therefore, in the present study the influence of kinematic viscosity
on the effective hydrodynamic radius will be neglected.

3. A circular cylinder in a simple shear flow
A thorough investigation of the behaviour of a circular cylinder freely suspended

in simple shear flow is essential to the understanding of many complex problems
in suspension hydrodynamics. The present study is focused on the angular velocity
and streamline patterns for a circular cylinder suspended in a simple shear flow.
The Reynolds number covers the range up to about 320. Results are summarized in
figure 2.
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Figure 2. Comparison of the simulation results on the angular rate of rotation of a circular cylinder
in shear flow with other numerical and experimental results. The angular rates obtained in numerical
simulation are always larger than the corresponding data obtained in experiments. The numerical
results obtained by Kossack & Acrivos (1974) at high Reynolds number can be fitted by a straight
line with slope = −0.5. The results for H/r = 4 by the present simulation, however, are fitted by a
straight line with slope = −0.28.

For very low Reynolds number, where inertia can be neglected, the angular rate
of rotation of the cylinder is given by (3), χ̇ = G/2. Results from simulations of a
freely suspended circular cylinder in a simple shear flow with Re = 0.08 are obtained.
In this simulation, the computational domain includes L × H = 640 × 320 lattice
nodes, the fluid viscosity ν = 0.5, the density ratio α = ρs/ρf = 1.0, and the radius
of the circular cylinder r = 16 lattice nodes. The dimensionless rotation rate reaches
steady state at χ̇/G = 0.4982, in good agreement with the value of 0.5 predicted by
(3) for Re = 0. As predicted by Kossack & Acrivos (1974), when the value of the
Reynolds number increases, the dimensionless angular rate of rotation, χ̇/G, decreases
in value. However, it should also be noted that the rotation rate of the cylinder at the
steady state is dependent on the confinement ratio H/r. In the above simulation, the
confinement ratio, H/r, is 20. When H/r = 8, the rotation rate is 0.4820 at Re = 0.187.
When H/r decreases to 4, the rotation rate is 0.4192 at Re = 0.192. The asymptotic
expansion obtained by Kossack & Acrivos (1974) is for a free boundary condition,
corresponding to H/r → ∞. For small Reynolds numbers the dimensionless rotation
rate of the cylinder at steady state decreases when the width of the channel decreases.

It is also found that the dimensionless rotation rate, χ̇/G, reaches a plateau at low
Reynolds number. When H/r = 8, χ̇/G is found to be about 0.48 for Re 6 3. When
H/r = 4, the value of χ̇/G is about 0.42 for Re 6 9. For an infinitely large system
where H/r → ∞ the maximum value of χ̇/G is 0.5, according to (3). The existence
of the two parallel solid walls in the system suppresses the maximum value of χ̇/G
to values lower than 0.5. In the paper by Poe & Acrivos (1975), the data from a
cylinder suspended in shear flow are not provided for very low Reynolds number,
and therefore the plateau is missing from the results in their experiments.
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For higher Reynolds numbers, 6 6 Re 6 20, the present computational results are
compared to the experiments by Poe & Acrivos (1975). Confinement ratio was taken
to be H/r = 6.32, 10.8, or 11.24 in the experiments, while the rotating rate of the
cylinder at the steady state did not strongly depend on the confinement. In the present
calculation H/r = 8 is chosen. The results of the present computation are in good
agreement with the experiments by Poe & Acrivos (1975), as shown in figure 2.

For Reynolds numbers above 20, the present computational analysis deviates from
the experiments by Poe & Acrivos (1975). The experiments show that χ̇/G = 0.311
(when Re = 22.4 and H/r = 11.24), χ̇/G = 0.290 (when Re = 22.96 and H/r = 10.8),
and χ̇/G = 0.309 (when Re = 22.44 and H/r = 6.32). However, in the present calcula-
tion the rotating rate is χ̇/G = 0.3545 (when Re = 22.96 and H/r = 10.8), apparently
higher than the experimental results. In the experiments (Poe & Acrivos 1975) when
the Reynolds number is higher than 23 the shear flow becomes unstable. The shear
flow instability in the experiments might lead to dissipation of the kinematic energy,
and lower the rotating rate of the cylinder. The present computational method being
in two-dimensions, however, is not able to capture the instability in the experiments.

Recently, experiments at moderate Reynolds numbers, 39 6 Re 6 108, were carried
out by Zettner & Yoda (2000). In order to compare the present computational results
with the experiments in this range of Reynolds numbers, the size of the computational
domain is for the moment fixed at 2224 × 256 lattice nodes, and the radius of the
circular cylinder is r = 64 lattice nodes. The time relaxation parameter used in the
discrete Boltzmann equation is taken to be τ = 1.0, or ν = 1/6. The solid-to-fluid
density ratio is α = ρs/ρf = 1. The confinement and the density ratio are in agreement
with the experimental setup of Zettner & Yoda (2000). Comparing the results obtained
by Poe & Acrivos (1975) and those by Zettner & Yoda (2000), they do not seem to
be in agreement as the rotating rate of the cylinder at the lower Reynolds number
of about 20 (Poe & Acrivos 1975) is even lower than that at the higher Reynolds
number of about 39 (Zettner & Yoda 2000). The present investigation shows that the
rotating rate of the cylinder at steady state strongly depends on the confinement ratio
H/r at Reynolds number in the range of 20 < Re < 40. This explains the discrepancy
between the two experiments.

When a cylinder suspends freely in between two parallel plates moving in opposite
directions, simulations give results in relatively good agreement with the experimental
results by Zettner & Yoda (2000). Comparison of the computational results with
the experiments presented in figure 2 shows a difference in rate of rotation of about
9% at Re = 39 and 5% at Re = 108. To verify the accuracy of the computational
method, the results for a freely suspended cylinder at Re = 39.168 are obtained with
five different computational parameters, namely (τ, r) = (1.0, 64), (0.625, 32), (0.5625,
16), (0.75, 16), and (0.5625, 8). The dimensionless rotating rate at steady state is found
to be 0.3816, 0.3829, 0.3796, 0.3790, and 0.3790, respectively. Different values of the
relaxation parameter and various sizes of the computational domain yield very close
results, showing the independence of the results from the number of computational
lattices and the relaxation parameter, τ. The simulation results are always larger than
those of the experiments, which suggests that this discrepancy may be due to a small
amount of friction at the two ends of the cylinder in the experiments.

The streamlines around a freely rotating circular cylinder at Reynolds number
Re = 76.8 presented in figure 3. A similar pattern is obtained in the experiments
by Zettner & Yoda (2000). It is clear that flow near the moving walls contributes a
positive torque in favour of the particle rotation, while the recirculating flow in the
central region in between the two plates exerts a negative torque (i.e. in a direction
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Figure 3. The streamlines for a freely rotating circular cylinder in shear flow. The Reynolds
number is Re = 76.8. A similar pattern is observed in experiment.

Figure 4. The streamlines for a fixed circular cylinder in shear flow.
The Reynolds number is Re = 76.8.

resisting the rotation of the cylinder) on the cylinder. This unfavourable contribution
to the torque increases with the Reynolds number, reducing the frequency of rotation
of the cylinder. A third region is the confined flow pattern (i.e. closed streamlines)
moving near and around the cylinder due to the no-slip condition at the surface. This
layer obviously transfers the momentum from the moving walls and the recirculating
flow to the cylinder. The net effect of the liquid layer around the cylinder is a small
amount of drag reducing the rate of rotation.

As a reference, the streamlines from the computational results at Re = 76.8 for
a fixed cylinder are presented in figure 4. The main qualitative difference with a
freely moving cylinder is the absence of the closed layer around the cylinder and the
attachment of the four separation points on the surface of the cylinder. The computed
downstream and upstream stagnation points on the top half of the circular cylinder
are located at +43.4◦ and −49.7◦ from the y′-axis, respectively.

In both cases of a freely moving or a fixed cylinder, as the Reynolds number
increases, the upstream and downstream stagnation points move closer to each other
and the magnitude of the negative torque on the cylinder from the recirculating region
increases.

The components w (in the z′-direction) and v (in the y′-direction) of the velocity
profile at some sections in the computational domain are compared with the exper-
imental measurements by Zettner & Yoda. Figure 5(a) shows the comparison for
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Figure 5. (a) The velocity components w and v versus y′ for a rotating cylinder at section
z′/r = −1.8467742. The Reynolds number is Re = 79.6. (b) The velocity component v versus y′
for fixed cylinder at section z′/r = −1.875. The Reynolds number is Re = 76.8. The symbol ◦
represents w/Gr in the experimental data, while solid line represents simulation results. The symbol
� represents v/Gr in the experimental data, while dashed line represents simulation results.

a rotating cylinder, and figure 5(b) for a fixed cylinder, at a selected section. The
computational results show good agreement with the data.

For high Reynolds number, the theoretical investigation by Kossack & Acrivos
(1974) predicted a scaling relation showing that the rotation rate decreases as Re−1/2.
In order to examine the scaling relation for the rotation rate for high Reynolds
number, the simulation is extended to Reynolds numbers up to Re = 320 for H/r = 4.
The −1/2 exponent, however, is not found in the present study. With H/r = 4 the
rotation rate can be approximated by a power law with exponent −0.28. As shown in
figure 2, the data obtained in the experiments with H/r = 4 by Zettner & Yoda (2000)
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Figure 6. Location of the stagnation point for a freely rotating cylinder in a simple shear. rs is the
distance between the stagnation point and the centre of the circular cylinder.

follow the same scaling behaviour with exponent close to −0.28. The −1/2 scaling
law by Kossack & Acrivos is not observed by the present computational investigation
or by Zettner & Yoda’s experiments using the confined channel with H/r = 4. Since
the exponent, −1/2, in the scaling relation, found by Kossack & Acrivos (1974) for a
circular cylinder, depends on the confinement of the channel, it is not universal.

The location of the stagnation point computed for the rotating cylinder is calculated
and compared with numerical results (Kossack & Acrivos 1974) as well as experi-
mental data (Poe & Acrivos 1975). Results are summarized in figure 6. The distance
rs from a stagnation point to the centre of the cylinder depends on the Reynolds
number as well as the confinement ratio, H/r. At very low Reynolds numbers the
results obtained at H/r = 8 are much lower than the numerical results by Kossack
& Acrivos (1974). The discrepancy can be explained by the fact that the method of
Kossack & Acrivos is based on an unbound large system. When the confinement
ratio increases to H/r = 20, however, the results obtained by the present calculation
are in good agreement with the numerical results by Kossack & Acrivos (1974). At
Reynolds number between 5 and 10, with H/r = 8 the results by the present method
are in good agreement with the experiments by Poe & Acrivos (1975). However,
for Reynolds number above 15, the present calculation results are higher than the
experimental data. When H/r = 4 the location of the stagnation point at various
Reynolds numbers is provided in table 1.

4. The effect of Reynolds number on the dynamics of an elliptical cylinder
In this section, we present and discuss the effect of inertia on the dynamics of a

neutrally buoyant (i.e. α = ρs/ρf = 1.0) elliptical cylinder in shear flow. The effect of
the density ratio on the dynamics will be discussed in the next section.

Results from a simulation of a freely suspended elliptical cylinder in simple shear
flow with Re = Gd2/ν = 0.08, where the major axis b = 2c, have been presented
before (Aidun et al. 1998). The computational results are in good agreement with
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Reynolds number Stagnation point

0.768 (±0.008r, ±1.281r)
39.168 (±0.148r, ±1.203r)
76.8 (±0.195r, ±1.125r)
93.04 (±0.242r, ±1.094r)

108.54 (±0.242r, ±1.078r)

Table 1. The location of the stagnation points (y′, z′) for the rotating circular cylinder when
H/r = 4.
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Figure 7. Orientation and rate of rotation of an ellipse at small particle Reynolds number.
(a) Jeffery’s solution for Re = 0; (b) computational result at Re = 0.08; and (c) computational result
at Re = 1.0.

Jeffery’s solution, as shown in figure 7. As the Reynolds number approaches 1.0, the
results deviate from the asymptotic solution with a larger period of rotation.

When the Reynolds number is large, the behaviour of the system becomes quite
different from Jeffery’s solution. In the remaining part of this section, the computa-
tional grid system size is 1600 × 320, the ellipse’s size is b = 32 and c = 16, and the
shear rate is G = 1/2048. The fluid viscosity is adjusted for computations at Reynolds
number Re = 5, 10, 15, 20, 24, 26, 28, 30, 40 and 50. The rates of rotation of the particle
at various Re are shown in figure 8. When Re 6 28, the motion of the ellipse is
a periodic rotation with non-uniform angular velocity. At larger Reynolds number,
Re > 30, however, the ellipse does not rotate any longer; instead it takes a stationary
position in the shear field (Aidun & Ding 1997).

The minimum of χ̇/G decreases as the Reynolds number increases, as shown in
figure 9 with a straight line fit, given by

χ̇min

G
∼ Rec − Re, (9)

where Rec ' 29 is a critical Reynolds number. The period of the rotation increases
rapidly as the Reynolds number becomes larger, as shown in figure 10. Denote
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Figure 8. The rate of rotation of an elliptical cylinder in a shear field between two parallel channels
at various particle Reynolds numbers. (a) Re = 0; (b) Re = 15; (c) Re = 28; and (d) Re = 30. These
results show the lack of existence of the periodic state at Re > 30.
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Figure 9. The minimum of the angular velocity decreases as Reynolds number increases. The
straight line is the best fit to the simulation results. At Rec ∼ 29 the minimum of the angular rate
is expected to vanish.

ε = χ̇min/G, and χ0 as the angle at which the ellipse has its minimum angular velocity.
Since χ̇ reaches its minimum at χ = χ0, it can be expanded in the vicinity of χ0 as

χ̇

G
∼ ε+ A(χ− χ0)

2, (10)

where A is a positive constant. The period T is basically dependent on the length of
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Figure 10. The period of the motion of the ellipse increases to infinity as the Reynolds number
goes to the critical value. The curve in the figure presents equation (12) with C = 100 and Rec = 29,
which is in good agreement with the simulation results.

time the ellipse is oriented in the vicinity of χ0, hence

T ∼
∫ χ2

χ1

dχ

χ̇
(11)

where χ1 < χ0 and χ2 > χ0 are two constants, independent of ε. With the application
of (10) near the transition point, that is where ε→ 0, it is found that T ∼ ε−1/2, or

GT = C(Rec − Re)−1/2, (12)

where C is a constant. For the ellipse considered here with critical Reynolds number,
Rec = 29, the constant value, C = 100, provides a very good prediction of the results
as shown in figure 10.

It is easy to see that χ0, the angle at which the ellipse has its minimum angular
velocity, is exactly π/2 when Re = 0. However, when Re > 0 the angle χ0 is always
smaller than π/2. In fact, χ0 ' 0.476π when Re = 1, and χ0 ' 0.45π when Re = 28.
Moreover, when Re > Rec, the angle of the ellipse corresponding to the stable
stationary orientation decreases as Re increases. For example, when Re = 50 the
stable angle is about 0.37π, smaller than the orientation angle at the critical Reynolds
number.

To better understand the physical behaviour of the problem and the transition
of the system from periodic to steady state at the critical Reynolds number, the
streamlines at different values of Re are examined. To examine the forces on the
particle, the net torque on a fixed particle in shear flow is computed. The streamlines
for the system with orientation angle χ = (4/9)π = 80◦ are shown in figure 11. There
are two groups of streamlines in figure 11(a): the shear layer close to the walls and
the recirculation region at the centre. The shear layer contributes a positive torque
on the particle while the recirculating region of the fluid has a negative contribution.
The net torque on the particle is dependent on the particle Reynolds number. For an
ellipse where c < b, the net torque on the particle is dependent also on the orientation



330 E. Ding and C. K. Aidun

(c)

(b)

(a)

Figure 11. The streamlines when the ellipse is fixed in shear flow with the orientation angle
χ = 80◦. (a) Re = 1, (b) Re = 20, (c) Re = 40.

of the particle. The streamlines at particle Reynolds numbers Re = 1, 20, and 40, are
shown in figures 11(a) to 11(c), respectively. The larger the Reynolds number, the
larger the recirculation region of the flow. At Re = 40, the net torque on the solid
particle is negative. If the particle is released in this case it will initially rotate in a
clockwise manner before reaching the stationary orientation.

The computations for a fixed ellipse are extended to angles ranging between 0 and
π, and the results are presented in figure 12. When Re = 1 or Re = 20 the torque
on the solid particle is always positive, hence the solid particle rotates with the shear
layer. When Re = 40, however, there are two points on the curve, the fixed points,
where the net torque on the particle is zero. The fixed point at the smaller angle,
χ = χa, is a stable fixed point. That is, if the initial angle is smaller than χa, the net
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Figure 12. The net torque exerted on the ellipse by the fluid varies when the orientation angle
changes. When Re > Rec, the curve has two intersection points with the χ-axis. The left one, shown
with a solid circle, is stable, while the right one, the open circle, is unstable. These points correspond
to the stable (solid circle) and unstable (open circle) states in the phase-space trajectories shown in
figure 14(c).

torque on the particle will be positive and the particle will rotate counter-clockwise;
however, if the initial angle is larger than χa, the particle will rotate in a clockwise
manner. In any case, the orientation of the particle will converge to the fixed point
at χ = χa. On the other hand, the fixed point with larger angle, χ = χb, is unstable.
That is, if the initial orientation is slightly disturbed near the fixed point χb, the
particle will rotate to diverge away from the unstable fixed point and converge to
the stable orientation. Then at transition, there must be a critical value of Reynolds
number, Rec, between 20 and 40 where the curve is just tangent to the χ-axis so that
there is only one critical point. In fact, according to the results obtained above, it
is clear that the critical value Rec is about 29. The system undergoes a saddle-node
bifurcation as the Reynolds number crosses the critical value. This explains the −1/2
exponent in the scaling law presented in (12), since the period of oscillation scales to
this exponent for any saddle-node bifurcation (Lichtenberg & Lieberman 1992). The
consequences of this finding in terms of the generality of the scaling will be presented
in the following sections.

The information obtained in the simulation can be used to provide the distribution
of the torque exerted by the fluid on the solid particle. The force df on the segment
dl on the edge of the ellipse is

df = S · n dl, (13)

where S is the momentum flux tensor, and n is the unit vector normal to the segment,
as shown in figure 13(a). Then the torque at this segment is given by

dN = r × df = r × (S · n) dl, (14)

where r is the vector from the mass centre of the particle to the segment dl. As the
shear rate G → 0, the momentum flux S will be S (0) = −p0I , where I is the unit
tensor, and p0 is the pressure, which is a constant independent of position and time.
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Figure 13. For caption see facing page.



Dynamics of particles suspended in shear flow with inertia 333

Letting

S = S (0) + ∆S , (15)

since the first term S (0) has no contribution on the net torque, N is given by

N =

∫ 2π

0

r × (S · n) dl

dξ
dξ =

∫ 2π

0

r × (∆S · n) dl

dξ
dξ. (16)

Denoting

N (ξ) =

∫ ξ

0

r × (∆S · n) dl

dξ
dξ

then
dN (ξ)

dξ
= r × (∆S · n) dl

dξ
.

With this method, one can calculate not only the total torque on the particle but also
the angular distribution of the torque.

In the numerical simulation, the net torque is computed by contributions from the
fluid nodes around the solid particle. The accumulation of the torque from ξ = 0 to
2π is shown in figure 13(b), and the torque distribution around the particle is shown
in figure 13(c) for Re = 1, 20, and 40. The results demonstrate the impact of inertia
on the effect of forces due to fluid–solid interaction.

To investigate the mechanism of transition and to understand the physics of the
particle behaviour, we examine the trajectories in the phase-space spanned by the
orientation angle χ and its differential dχ/dt. These trajectories for Reynolds number
Re = 20 (sub-critical case), Re = Rec (the critical case), and Re = 100 (super-critical
case) are shown in figures 14(a) to 14(c), respectively. The solid lines in these figures
are obtained by computational simulation, while the dashed lines are drawn based
on our knowledge of the dynamical behaviour of the system. In this numerical
calculation, the transient process is omitted by cutting off the first several hundred
time steps. The flow of the solution in the phase-space clearly shows a saddle-node
bifurcation at the critical Reynolds number. The influence of the recirculation region
on the net torque and the mechanism of transition, that is the type of bifurcation
in the system dynamics, provide the key information in understanding the effect of
inertia on the behaviour of a solid particle suspended in shear. Additional information
and conclusions are presented in the following sections.

In order to verify the size of the computational grid used in these calculations,
it is interesting to examine the effect of the grid size on the results. The results at
Re = 28 and Re = 30 computed with 3200 × 640 and 1600 × 320 grid systems of
lattice nodes are presented in figure 15. There is no qualitative difference between the
results from the two grid systems. The only difference is quantitative; for example,
the value of ε, the minimum of χ̇/G, for Re = 28 increases from 0.00367 to 0.00376,
and the predicted period of the rotation increases from 82.4/G to 88.2/G. The small
deviation in the period is caused by the inaccuracy in calculation of the angular rate
of rotation. Since the rotation period, T , is proportional to ε−1/2, even a small error
in ε, caused by the discretization of the solid surface, will result in a large deviation

Figure 13. (a) Notation used in the investigation of the angle distribution of the torque. (y′, z′)
are coordinates fixed in space, while (y, z) are coordinates fixed on the ellipse. (b) The accumulated
torque N (ξ) versus ξ, the values of the torque at ξ/π = 2.0 are the net torque on the ellipse. (c) The
torque per unit angle dN (ξ)/dξ.
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in T . In other words, T is very sensitive to the minimum value of the rate of rotation
near the point of transition.

5. The effect of density ratio on the dynamics
All of the analyses in the previous section treat the solid particle density ρs equal to

the fluid density, ρf . The discussion in this section will be centred on the universality
of the scaling law (12), i.e. the effect of Stokes number, or the ratio of densities,
α = ρs/ρf , on the scaling law.

Numerical results, of which a few are shown in figure 16, display the structure of
the parameter space. The parameter space is divided into two regions by a dashed
line. The symbol © in this figure represents the stationary state, while + represents
the rotation state. The transition between the stationary state and the rotation state
takes place at the critical Reynolds number, Rec, corresponding to the dashed line
in figure 16. Results for α = 1, obtained in the previous section, are included in this
figure.

In order to see the effect of the density ratio on the dynamics, the temporal
variations of the rotation rate for a fixed value of Reynolds number and different
values of α are compared. Results for Re = 10 are summarized in figure 17. It is
found that on increasing the density ratio, the initial transient time becomes longer,
and the fluctuation amplitude of angular velocity becomes smaller. This is a direct
consequence of the solid particle inertia. As α → ∞ one may expect that the ellipse
will rotate indefinitely with its initial rate of rotation. With decreasing the density
ratio, the minimum of χ̇/G decreases. When the density ratio is 100, 20, 1.0 and 0.25,
the minimum value of the rotation rate, χ̇/G, is 0.40, 0.29, 0.09, and 0.085, respectively.
By extrapolation, it is estimated that the minimum of χ̇/G is about 0.083 when α→ 0.
When Re = 10 the system always approaches a time-periodic rotation state.

For Re = 50, the temporal variations of the rotation rate are also calculated as a
function of α. If α > 3, the minimum of χ̇/G will always be positive, and the ellipse
will rotate forever in a time-periodic manner. If α 6 2, however, the system will
approach a steady state, as shown in figure 18. At some value of α, say αc, between
2 and 3 the minimum of χ̇/G will be zero. The minimum of χ̇/G decreases when
α decreases, and a straight line fit similar to (9) will be obtained. Based on similar
reasoning to that presented in the previous section, the oscillation period scales with
the density ratio according to the same −1/2 exponent, that is

GT = C(α− αc)−1/2,

where C is a constant. The exponent, −1/2, representing the general scaling law
remains the same.

It is clear from the results presented in this section that the critical Reynolds
number, Rec, is dependent on the density ratio, α. From the results summarized in
figure 16, it is concluded that the critical Reynolds number increases with α.

In order to verify the universality of the exponent a calculation along different

Figure 14. The trajectories of the ellipse in phase-space. (a) Re = 20 < Rec, (b) Re = Rec, and
(c) Re = 100 > Rec. Solid lines are obtained by computational simulation, while dashed lines are
drawn based on our knowledge of the dynamical behaviour of the system. The open and closed
circles in (c) correspond to the stable and unstable nodes shown, respectively, in figure 12.
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Figure 15. Comparison of the results of simulations with different size systems. Two sizes of
systems, 1600×320 and 3200×640, are calculated. (a) 1600×320, Re = 28; (b) 3200×640, Re = 28;
(c) 1600× 320, Re = 30; (d) 3200× 640, Re = 30.
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Figure 16. The transition boundary from a time-periodic state (+) to a steady state (◦) in the
density ratio–Reynolds number (α, Re) parameter space. The critical Reynolds number varies with
density (i.e. Rec = Rec(α)) where in the limit Rem = limα→0 Rec. The initial orientation is χinitial = 0.

paths in parameter space is carried out. The line

α = 4− Re

15
(17)

is chosen arbitrarily as an example, where both parameters, Re and α, vary. The
points along this line are shown in figure 16 as the inclined set of points. Although
the density ratio is different for every point in figure 19, the period of the particle
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Figure 17. Simulation for Re = 10 with different values of the solid-to-fluid density ratio α.
(a) α = 0.25; (b) α = 1.0; (c) α = 20; (d) α = 100.
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Figure 18. Simulation for Re = 50 with different values of the solid-to-fluid density ratio.
(a) α = 1.0; (b) α = 2; (c) α = 3; and (d) α = 4.

rotation is given by (12) with C = 106 and Rec = 34.5. From all of the above
analyses it is concluded that the exponent −1/2 in the scaling law (12) is universal,
independent of any details in the system. The reason is simple: the transition is
through a saddle-node bifurcation (also known as tangent bifurcation) based on the
system dynamics prior to and after the critical point. The critical exponent, −1/2,
in the scaling law (12) is universal for every saddle-node bifurcation phenomenon
(Lichtenberg & Lieberman 1992). The computational results from this study reveal
that the transition is through a saddle-node bifurcation when a particle is suspended
in shear flow. From this results, one can immediately generalize the scaling to any
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Figure 19. Along the line α = 4−Re/15 in parameter space the period of the motion of the ellipse
follows the same scaling law as that in figure 10. Constants C = 106 and Rec = 34.5 are used to fit
the simulation results.

parameter, p, in the system (e.g. Re and α) which can lead to this transition. In other
words, in general, the period of time-periodic flow or the rotation of the solid particle
in the shear flow varies as

|p− pc|−1/2,

where pc is the critical value of the parameter p where the transition takes place.

6. A three-dimensional particle: ellipsoid in shear flow
The results presented in the previous section cover the dynamics of circular and

elliptical cylinders in two-dimensional shear flow. In this section, a neutrally buoyant
three-dimensional particle, an ellipsoid with semi-axes a = b = 2c (oblate spheroid) in
shear flow is considered. The axis of rotation is always the x-axis. At Re = 0, in the
absence of inertia, the trajectories of two-dimensional and three-dimensional particles
in two-dimensional shear flow are identical, as presented by Jeffery’s solutions in
(2) and (3). However, at Re > 0, the particle trajectories are no longer the same.
Therefore, it is necessary to examine the dynamics of a three-dimensional particle and
the difference with the two-dimensional cases presented above. The computational
analysis of the particle motion in the range of Reynolds numbers 5 to 90 is presented
in figures 20 to 22.

In a shear flow with a given shear rate, G, and fluid viscosity, ν, the particle
Reynolds number, as defined here, is given by 4Gb2/ν. A three-dimensional ellipsoid
of a major semi-axis b can be constructed from infinite slices of elliptical cylinders
with infinitesimal thickness and major semi-axis in the range of 0 to b. Hence we
conjecture that the rate of rotation of the ellipsoid at some Reynolds number, say Re,
should be in between the rate of rotation of the two-dimensional cases at Reynolds
number 0 and Re. This analysis may help in understanding the dynamics of a three-
dimensional ellipsoid in shear flow. As an example, as shown in figure 20, the rate
of rotation of the ellipsoid at Re = 5 is in between the rate of rotation of the
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Figure 20. Comparison of the results of simulation between two-dimensional and three-dimensional
systems. (a) two-dimensional particle (ellipse) or three-dimensional particle (ellipsoid) with Re = 0;
(b) two-dimensional particle with Re = 5.0; (c) three-dimensional particle (ellipsoid) with Re = 5.0.
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Figure 21. Three-dimensional simulation for α = 1 with different values of Reynolds numbers.
(a) Re = 0 (analytical results); (b) Re = 50; (c) Re = 70; (d) Re = 90.

two-dimensional cases at Re = 0 and 5. In other words, the deviation of the rotation
rate for a three-dimensional ellipsoid at a Reynolds number, Re > 0, is smaller than
that for a two-dimensional elliptical cylinder at the same Reynolds number. In § 4,
it is shown that the computational results at Re = 0.08 are in good agreement with
Jeffery’s solution, (2) and (3). For three-dimensional particles, agreement with Jeffery’s
solution is better than the two-dimensional case at a small Reynolds number.

The rate of rotation at Re = 50, 70, and 90 is compared in figure 21 to the
asymptotic solution at Re = 0. Similarly to the two-dimensional case, the period
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Figure 22. The period of the motion of the ellipsoid increases to infinity as the Reynolds number
goes to the critical value. The curve in the figure represents equation (12) with C = 200 and
Rec = 81, which is in good agreement with the simulation results.

of rotation increases with the Reynolds number, approaching infinity at a critical
Reynolds number, Rec. The transition from time-periodic to steady state in the
three-dimensional case, considered here, occurs at Rec = 81. The critical Reynolds
number for the three-dimensional case is higher than that for the two-dimensional
case, consistent with the conjecture in the last paragraph. Application of the scaling
law, presented in (12), with C = 200 provides a good fit to the rotation period of the
ellipsoid from Re = 50 to Re = 81, as shown in figure 22. Again, the details of the
case considered do not make a difference in the functional dependence of the scaling
principle.

The computational domain for three-dimensional simulations is 40×200×80 lattice
nodes, and for various Reynolds numbers a combination of 8× 8× 4 or 16× 16× 8
lattice nodes is used to discretize the ellipsoid. The three-dimensional simulations are
performed on the parallel processor system, SP2, with the Message Passing Interface
(MPI) to minimize computational time. The total computational time (i.e. CPU +
communication between processors + other overhead) for Re = 70 from Gt = 0 to
100 with 51 200 time steps using 16 processors is about 3.5 hours; that is about 0.2 s
per time step. As indicated above, the computational time with the lattice-Boltzmann
method does not depend on the Reynolds number. This method provides an effective
tool for further analysis of particles suspended in fluid.

7. Summary of results
The purpose of the present work is to discuss the effect of inertia on the dynamics of

solid particles suspended in shear flow. To date, only the motion of a circular cylinder,
an elliptical cylinder, and an ellipsoid, suspended in fluid, has been investigated. Some
general conclusions may be stated based on the limited results presented above.

Inertia has significant influence on the dynamics of solid particles suspended in
fluid. In the Stokes flow regime, the dynamics, being linear, exhibit no transitions or
qualitative change with the flow. At small particle Reynolds number, the symmetry in
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the Stokes flow around the particle is disrupted and the particle behaviour deviated
gradually with added inertia. In the case of a particle in simple shear flow, the
influence of inertia is to gradually increase the rotation period, acting as an added
mass.

For a circular cylinder suspended in shear flow, the influence of inertia on the
dynamics of the solid particle has been discussed by other investigators (Robertson
& Acrivos 1970; Kossack & Acrivos 1974; Poe & Acrivos 1975 and Zettner & Yoda
2000). The results from the present computational analysis of a circular cylinder agree
well with the experiments. When the Reynolds number increases in value, the rotation
rate, χ̇/G, decreases, and the distance from the stagnation point to the centre of the
cylinder decreases. The effect of the solid walls confining the shear flow in a narrower
channel is found to be significant. It results in a faster motion of the fluid near the
moving walls, and it contributes a positive torque in favour of the rotation of the
solid particle. At the same time, the confinement makes the recirculating flow in the
centre region between the two walls exert a larger negative torque on the particle.
The competition between these opposing torques influences the dynamics differently,
depending on the value of the Reynolds number. At low Reynolds number, the
existence of the walls suppresses the dimensionless rotation rate. The rate of rotation
reaches a plateau depending on H/r when the Reynolds number is low enough. At
high Reynolds number, the rotation rate of the circular cylinder increases as the
distance between the walls decreases.

For an elliptical cylinder, and an ellipsoid, suspended in fluid, critical Reynolds
numbers are found in the present investigation where the dynamics of the solid particle
change significantly, and a new steady state appears. In the case presented in this
paper, at the critical Reynolds number, the positive torque on the particle contributed
by the shear layer is balanced by the negative contribution from the recirculating
region of the fluid, and the upstream–downstream asymmetry in flow field changes
the steady state from periodic to stationary, as shown in § 4. The value of the critical
Reynolds number is dependent on the solid-to-fluid density ratio, α = ρs/ρf . The
critical Reynolds number increases with the solid-to-fluid density ratio, as shown in
figure 16.

The universal scaling law, (12), is the most interesting result in the present work.
The transition from a time-periodic to a stationary state in a hydrodynamic system
may be through various bifurcation mechanisms with different scaling characteristics.
In this case, knowledge of the nature of bifurcation based on the system dynamics
prior to and after the critical point of transition has provided the critical information
leading to a universal scale. This universal scaling law, found and presented in this
study, should not be confused with the non-universal scaling for a circular cylinder
where no transition from one state to another has been shown to exist at finite Re.
The computational results in §§ 4, 5, and 6 reveal that for the case of an elliptical
cylinder or an ellipsoid suspended in shear flow, there is a transition to steady state
through a saddle-node bifurcation. However, there is no evidence showing that the
scaling relation found numerically for the circular cylinder in an unconfined shear
flow is through a tangent bifurcation or any kind of transition. In fact, for the
elliptical cylinder or the ellipsoid, prior to the bifurcation (when Re < Rec), the
rotation rate varies in a periodic manner going through maximum and minimum
values, while for the circular cylinder the rate is a constant. For the elliptical cylinder
or the ellipsoid, the minimum of the rotation rate, χ̇min/G, is linearly dependent on
the Reynolds number, as shown in (9), while for the circular cylinder the rotation rate
is not linearly dependent on the Reynolds number. The period of the rotation of the
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elliptical cylinder or the ellipsoid is proportional to (χ̇min/G)−1/2, while the rotation
period of the circular cylinder is proportional to (χ̇/G)−1. For the elliptical cylinder
or the ellipsoid, after the bifurcation, there are two fixed orientation angles in the
system, where one is stable and the other is unstable. For circular cylinders, however,
since c/b = 1, a stable orientation can never coexist with an unstable orientation
in the system. Therefore, the exponent in the scaling law for the elliptical cylinder
or the ellipsoid is universal, independent of any details of the system, such as the
confinement of the channel, the density ratio, and the aspect ratio of the particle,
while the exponent in the scaling relation for the circular cylinder at Re→∞ depends
on the confinement H/b, and it is not universal.

8. Conclusions and hypotheses
There is very little information available in the literature on the influence of inertia

on the behaviour of elliptical cylinders or ellipsoids in shear flow. In fact, the authors
could only find the limited computations by Feng & Joseph (1995), which are in the
low-inertia regions (Re = 1.0). As shown by Aidun et al. (1998), the impact of inertia
on particle dynamics in shear flow is significant. They show that by increasing the
Reynolds number, the motion of the elliptical body undergoes a major transition
from time-periodic rotation to a time-independent stationary state. Further analyses,
presented above, reveal the details of this transition, as well as a universal scaling
law. The remainder of this section is devoted to broader conclusions from the results
presented above.

Consider a solid particle placed in a shear flow. At Re = 0, the streamlines are fully
attached (Jeffrey & Sherwood 1980), and therefore the torque on the particle is always
positive forcing the particle to rotate, creating a time-periodic state. In the absence of
inertia, the flow is steady state if the particle is a body of revolution and the axis of
revolution is perpendicular to the plane of shear (from now on referred to as the body
of revolution). Otherwise, the flow is time periodic with a single frequency determined
by the rate of rotation of the particle. This is because at Re = 0, regardless of the
shape of the particle, the streamlines are fully attached, although the region of closed
streamlines extends to infinity (Cox, Zia & Mason 1968; Jeffrey & Sherwood 1980).

At Re > 0, however, the streamlines detach creating a region with flow recirculation,
as shown in figure 3 and figure 11. The gross influence of the flow recirculation on
the particle is to generate a negative torque and to decrease the net torque exerted
by the main shear stream; this is true regardless of the particle shape. Let us now
consider the influence of inertia in two cases: the first is a particle with an arbitrary
shape, and the second is the special case of the body of revolution.

In the first case, the net torque on the particle varies with the orientation of
the particle due to the location of the flow separation and the magnitude of the
negative torque contributed by the recirculating streamlines on the particle. The rate
of rotation varies in a periodic manner going through minimum and maximum values,
accordingly.

The second case is considered to be an asymptotic limit of the first case. That is, as
the relevant particle aspect ratio, β, approaches 1, then the particle becomes a body of
revolution. With this view of the second case, we can think of the problem in general,
where β < 1, and then consider the special case when β → 1.

In the general case, the effect of the fluid inertia on the rotation of a particle
in shear flow is to decrease the net torque on the particle through flow separation.
We will now present a few hypotheses which outline the characteristics of the first
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transition in the particle motion in shear flow, regardless of the particle shape or the
particular specifications of the shear flow.

Hypotheses: (a) A solid object (with β < 1) in time-periodic motion in a shear
field undergoes a transition from a time-periodic state to a stationary (steady) state
at a critical particle Reynolds number, Re = Rec, at a solid to fluid density ratio,
αc, where Rec = Rec(α), and limα→0 dRec/dα = 0, as shown by the dashed line in
figure 16. (b) The transition from a time-periodic to a steady state is through a
saddle-node (tangent) bifurcation. (c) The period of the time-periodic system (i.e. the
period of rotation) near the transition is proportional to (Rec − Re)−1/2, (α− αc)−1/2,
|q− qc|−1/2 (note: q is the shape parameter defined in (7)), and in general, |p− pc|−1/2,
where p represents any parameter in the system where a saddle-node transition takes
place at p = pc. (d) Below a certain Reynolds number, Rem, the particle motion,
and consequently the flow, will remain time-periodic regardless of the particle density
ratio. (e) As the shape factor, β, approaches 1, the saddle-node bifurcation ceases to
exist and the universal scaling is no longer valid.

We further conjecture that because the hypotheses presented above are independent
of the particular shape of the particle or the profile of the shear field, in principle, the
same is true for laminar shear or mean turbulent shear, as long as the axis of rotation
of the particle is perpendicular to the plane of shear. In fact, as long as the particle
is in a time-periodic rotation and the effect of fluid inertia is flow separation and,
consequently, negative torque on the particle, the transition will be through a saddle-
node (or tangent) bifurcation. This can be understood by examining the variation of
the net torque with particle orientation, presented in figure 12. At Re = Rec, there is
only one particle orientation where the net torque is zero (point of tangent). As Re
increases, this point bifurcates into two points of intersection representing stable and
unstable fixed points through a saddle-node transition.
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